Impacts of poplar and alder on soil carbon in pasture-tree systems

Authors

  • G.B. Douglas
  • R.E. Vibart
  • A.D. Mackay
  • M.B. Dodd
  • I.R. Mcivor

Abstract

Wide-spaced trees on pastoral land (pasture-tree (PT) systems) are a widespread feature of many farmed landscapes. They offer the potential to increase carbon (C) storage, with implications for reducing atmospheric CO2-C. The effect of PT systems on soil C stocks to 1 m depth was determined for trees aged 14-16 years at densities of 73-111 stems per hectare at four North Island sites (two with poplar, two with alder). Across sites, mean soil C concentration was 1.9-8.5% and mean total soil C mass was 120-455 tonnes C/ha. For alder systems, total C mass of PT was 37% less than adjacent pasture (Open) at Poukawa (120 versus 189 tonnes C/ha), whereas at Ruakura, there was no significant difference between systems. Total C mass of PT systems involving poplar did not vary significantly from adjacent Open systems at Tikokino (328 versus 352 tonnes C/ha) and Woodville (154 versus 202 tonnes C/ha). Soil at 0.3-1.0 m depth comprised up to half of total C mass. Results suggested that poplar and alder had different effects on soil C. Keywords: pastoral hill country, wide-spaced trees, carbon sequestration, greenhouse gas (GHG) mitigation

Downloads

Published

2016-01-01

Issue

Section

Past volumes