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Abstract

This review aimed to determine whether current
grazing management practices will suit future intensive
rotationally grazed pastoral systems. A review of literature
on grazing management recommendations found that
there was good agreement on the ‘principles’ required for
optimal grazing management. While these management
practices have stood the test of time, it is concluded that
shifts in external pressures (e.g., climate, plant selection
and breeding, system intensification) compared to the
period when farm-level grazing recommendations were
first developed, may necessitate a rethink of current
grazing recommendations. Examples include greater
pasture masses (e.g., around 4000 kg dry matter (DM)/
ha vs. the recommended range of 2600 to 3200 kg DM/
ha) where short-rotation (annual, biennial) and tetraploid
ryegrasses are sown, provided a consistent post-grazing
residual can be maintained (possibly between 40- and
70- mm height). Milder winters and the use of ryegrass
cultivars with higher growth rates in late winter/early
spring may necessitate either lower target pasture covers
at calving or shorter rotation lengths during winter. Longer
grazing rotations (well beyond the 3-leaf stage, i.c.,
equivalent to deferred grazing) can be recommended for
select paddocks from mid-spring into summer, to increase
seasonal resilience across the farm. Longer residuals
(evenup to 70 mm - i.e., almost double the recommended
height) might improve plant survival during periods of
high stress (e.g., heatwaves, droughts). Lastly, diverse
species pastures may require specific management to suit
dominant species other than perennial ryegrass.

Keywords: diverse pastures, grazing principles,
grazing rotation, leaf regrowth stage, post-grazing
residual

Background

The economic competitiveness of pastoral industries
is underpinned by the ability to use livestock to graze
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pastures in situ for as long as possible during the year.
Multiple studies in the dairy industry have identified that
the consumption of pasture is the most important factor
impacting on profit (Dillon et al. 2005; Ramsbottom et
al. 2015; Beca 2020). Grazing management of various
pasture species, focusing either at the level of the plant,
the grazing ruminant, or the whole farm, has been the
subject of decades of research. Notwithstanding that
in many cases, ‘grazing management’ research has
been separated into a focus predominantly on plants,
or on animals (Fulkerson & Donaghy 2001), there
is general agreement on the principles required for
‘optimal’ grazing of a temperate pasture, whether these
principles are based on sward height (Hodgson 1990),
variable day rotations (Mayne et al. 2000), herbage
mass targets (Sheath & Clark 1996), or leaf regrowth
stage (Fulkerson & Donaghy 2001). The knowledge
and science contained in multiple research studies have
been summarised in farmer-friendly publications, and
recommendations are broadly applicable to temperate
pastoral regions (e.g., Dairy Australia 2011; Lee et
al. 2011; McCarthy et al. 2015; Macdonald & Roche
2016).

At the farm level, these principles have been
summarised into comprehensive grazing decision
guidelines (e.g., Macdonald & Penno 1998; Macdonald
et al. 2010), which at the pasture level are based on
achieving ‘average pasture cover’ (average herbage
mass) targets at key times of the year. For example,
in dairy farm systems, pasture cover targets exist for
planned start of calving and again at balance date
(when pasture growth equals herd demand), with
additional operational support tools such as the ‘spring
rotation planner’ to help farmers achieve these targets
(Macdonald & Roche 2016). The basis for so many of
the recommended grazing management practices used
today have been derived largely from farm systems
research undertaken in the 1960s through to the 1990s
(Roche et al. 2017a).
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This farm systems research used decision-making
processes to manage pasture with the dual objectives of
meeting the animals’ requirements while maintaining
pasture nutritive value throughout the season
(Macdonald & Penno 1998). However, at the farmer
level, the application of localised grazing management
‘guidelines’ can sometimes vary from these grazing
management ‘principles’ (Macdonald et al. 2010).
Examples of this can include implementing a grazing
rotation that is longer than the ‘optimum’ range for leaf
senescence, in order to transfer autumn-grown pasture
into winter (Chapman et al. 2014), or removing stock
from the farm during winter and thus ‘undergrazing’
pasture in order to manage wet soils; both are examples
of targeting an optimum outcome for the farm system.

The dependence of pastoral farm systems on the
prevailing climate exposes farmers to increasing
risk as climate change results in more variability in
seasonal conditions, with an increasing number of
droughts, floods and/or heatwaves, migration of insect
pests and plant diseases into wider areas, and longer
feeding seasons of insect pests (Farrow et al. 1993;
Ward & Masters 2007; Ministry for the Environment
2018). Consequently, the poor recovery of pastures
to increased severity and frequency of adverse
environmental conditions impacts pasture persistence
and performance. The failure of ryegrass-based pastures
3 or 4 years post-sowing continues to be a significant
concern for many farmers, particularly in the upper
North Island. This, combined with the introduction
of new pasture types and cultivar selections, and
changes to system intensification, has resulted in a
loss in confidence in perennial ryegrass and associated
industry recommendations for grazing management.
Thus, the purpose of this review of literature is to
answer the question “Will current rotational grazing
management recommendations suit pastoral systems
over the coming several decades?” The review will
explore these practices at both the fundamental (i.e.,
pasture management at a plant level) and the systems
level (i.e., at a farm scale). Given the importance and
abundance of perennial ryegrass (Lolium perenne L.)
in temperate pastoral agriculture (Kemp et al. 2000),
much of the review will focus on this grass.

The foundations of grazing management

There are four broad objectives of grazing management:
optimising pasture production, nutritive value, and
persistence, along with utilisation by the grazing animal
(Roche et al. 2017b). They are linked, in that similar
grazing management decision rules can optimise all
four objectives (Fulkerson & Donaghy 2001). The two
most important characteristics of rotational grazing
management are grazing interval (when to graze a
paddock or area; colloquially known as rotation or

round length) and grazing intensity (how hard to
graze a paddock or area; colloquially known as post-
grazing residual, Roche et al. 2017b). At the plant
level, these objectives acknowledge the energy status
of the plant following a defoliation event (Fulkerson
& Donaghy 2001; Chapman 2016). A starting point
for designing an efficient grazing management system
is an understanding of the pasture regrowth curve
(Chapman 2016). Brougham (1955) first noted that
following defoliation to 50 mm residual height, grass
regrowth followed a sigmoidal (S-shaped) pattern,
starting slowly with a ‘lag phase’ and then increasing
exponentially, reaching a constant maximum rate and
then eventually declining as a ‘ceiling yield’ is reached,
at which leaf death equals leaf growth. This sigmoid
curve was a central tenet in Andre Voisin’s textbook
‘Grass Productivity’, to promote the importance of
a suitable ‘rest period’ between sequential rotational
grazings (Voisin 1959), and is also a key principle
underpinning current recommendations for grazing
management in both rotational and continuous stocking
systems (Fulkerson & Donaghy 2001; Lee et al. 2011;
Chapman et al. 2014; McCarthy et al. 2014; Chapman
2016; Roche et al. 2017b).

Current recommendations for grazing
management: the plant level

In a rotational grazing system, the optimal grazing
rotation at the plant level is based on the dominant grass
species attaining a set number of live leaves per tiller,
after which the emergence of each additional new leaf
is balanced by the death of the oldest leaf (Fulkerson
& Donaghy 2001). This ‘leaf stage’ is defined by the
lifespan of leaves and varies between species (Roche
et al. 2017b).

Leaf regrowth stage has been proposed as a practical
tool to set grazing interval in order to optimise the
persistence, production and nutritive value of a range of
pasture species, including perennial ryegrass, biennial
ryegrass (Lolium multiflorum L.), tall fescue (Festuca
arundinacea Schreb., syn., Schedonorus arundinaceus
and Lolium arundinaceum), prairic grass (Bromus
willdenowii Kunth.), kikuyu (Pennisetum clandestinum
Hochst. ex. Chiov.), and cocksfoot (Dactylis glomerata
L.) (Fulkerson et al. 1993; Fulkerson & Slack 1994,
1995; Donaghy et al. 1997, 2008; Fulkerson et al. 1998,
2000; Fulkerson & Donaghy 2001; Rawnsley et al.
2002, 2014; Turner et al. 2006a, b; Hendriks et al. 2016;
Kaufononga et al. 2017; Pembleton et al. 2017). At the
lower (more frequent) scale of defoliation, the grazing
interval should allow enough time for plants to regain
their energy reserves to ‘cope’ with another grazing
(i.e., the 2-leaf stage in ryegrass pastures; Donaghy
& Fulkerson 1998), while at the upper (less frequent)
scale of defoliation, the grazing interval should avoid
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significant herbage senescence and declining herbage
nutritive value (i.e., the 3-leaf stage in ryegrass pastures;
Fulkerson & Donaghy 2001). Leaf stage relates to the
aforementioned sigmoid curve (Brougham 1955),
with the 2- to 3-leaf stage generally coinciding with
the period of maximum average growth rate (Parsons
& Chapman 2000; Chapman 2016), indicating the
optimum balance between the amount of new leaf
produced and the amount of old leaf dying (Chapman
et al. 2014).

Leaf emergence is affected predominantly by
temperature, and to a lesser extent by soil moisture
availability (Mitchell 1953; Fulkerson & Donaghy
2001; Rawnsley et al. 2010), and so leaf stage remains
relatively consistent in plants within and between
paddocks of farms in close proximity for any given
period of time. However, pasture growth and therefore
accumulation of herbage mass is affected by many
other factors in addition to temperature and moisture,
including tiller density, botanical composition, light, soil
fertility and previous grazing management (Brougham
1957; Langer 1979). Thus, at canopy closure, the point
beyond which no further improvement in interception
of photosynthetically-active radiation occurs (Akmal
& Janssens 2004), there is an increase in fibrous stem
material and a decline in net pasture growth rate,
tillering and pasture nutritive value (Rawnsley et al.
2007, 2014; Pembleton et al. 2017). Canopy closure
is not always linked directly to a specific leaf stage,
and paddocks that are at or close to canopy closure
should be grazed regardless of leaf stage (Rawnsley
et al. 2014; Roche et al. 2017b). This is because, as
canopy closure progresses, shading of the pasture base
increases, which is a major factor in tiller death (Ong &
Marshall 1979). Shading of the pasture base also results
in aerial tillering (Hughes & Jackson 1974; Korte et al.
1987), in which daughter tillers arise from elevated
apical meristems and are unable to effectively develop
roots (McKenzie 1998), which negatively impacts on
tiller replacement and eventually pasture persistence
(Hughes & Jackson 1974). At the level of the paddock
or farm, this optimum grazing interval translates to the
aim of maintaining pasture in a high-quality, vegetative
state and minimising senescence and stem production
(Parsons & Chapman 2000), to achieve efficient
conversion of pasture into animal product (Mayne et
al. 2000).

The optimal post-grazing residual at the plant level
is based on leaving 40-50 mm of plant behind, as this
is where temperate grasses store the majority of their
energy reserves (Fulkerson & Donaghy 2001). More
severe grazing removes progressively more leaf area
and also reduces the major energy storage areas of the
plant (tiller base) resulting in reduced regrowth and
may impact negatively on persistence (Fulkerson &

Donaghy 2001; Lee et al. 2008a). There is little effect
on subsequent pasture yield of post-grazing residuals
varying from 40 mm to 80 mm height, however more
lax grazing reduced herbage nutritive value (Lee et al.
2008a). Although increased yields of pasture have been
achieved with longer post-grazing residuals (e.g., 1895,
1602 and 1382 kg dry matter (DM)/ha for pasture field
plots harvested to 100, 80 and 60 mm residual stubble
height, respectively), they are only in the short term
(i.e., the first of seven subsequent 3-leaf regrowth cycles
following implementation of defoliation treatments),
and cumulative yields were significantly lower at the
end of the seven harvests (11.3, 13.3 and 13.7 t DM/
ha, for 100, 80 and 60 mm residual stubble height,
respectively, Lee et al. 2008a). Additionally, any further
transient pasture growth that may occur under more
lax defoliation does not compensate for the associated
herbage loss through leaf senescence along with
reduced rates of tillering (Fulkerson & Slack 1995; Lee
et al. 2007, 2008a). Hunt & Brougham (1967) found
that where repeated lax defoliation (cutting to 100 to
140 mm height over 7 weeks) of perennial ryegrass left
enough herbage to intercept around 95% of incident
light, the amount of green leaf and the number of tillers
initiated declined progressively, while the proportion of
dead material increased, which those authors concluded
indicated the need for periodic close defoliation to
renew the photosynthetic capacity of the grass sward
and to prevent shading of tiller bases.

Post-grazing residual impacts on the sigmoid
regrowth curve, with more severe grazing resulting in
a longer lag phase and a longer time to reach ceiling
yield, and more lax grazing resulting in a shorter or
no lag phase, and a shorter time to reach ceiling yield
(Parsons et al. 1988; Chapman 2016). Thus, although
most pastures can recover from very low post-grazing
residuals (e.g., 20 mm) if enough time is allowed (i.e., a
long subsequent rotation), higher post-grazing residuals
(e.g., >70 mm) require shorter associated rotations
to maintain high quality pasture, and these shorter
rotations (through preventing replenishment of plant
energy reserves) can compromise yield and persistence
(Chapman 2016; Roche et al. 2017b).

The optimal post-grazing residual of 40-50 mm
results in a high-quality pasture and allows the
implementation of a rotation in the optimal range (2- to
3-leaf stage). Importantly also from the point of view of
the grazing animal, post-grazing residuals are a practical
indicator of how well animals are being fed. Baudracco
et al. (2010) showed that a quadratic relationship exists
between pre-grazing herbage DM/ha and daily DM
intake/cow; as pre-grazing herbage DM increased,
the post-grazing residual increased at a greater rate
than that of the herbage DM intake. In an analysis of
the review by Baudracco et al. (2010), Wilkinson et
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al. (2020) determined that the lines for daily herbage
intake/cow and post-grazing residual DM intersected at
a post-grazing residual of around 1500 kg DM/ha. Post-
grazing residuals can therefore be used as a proxy for
pasture offered - as they increase, the increase in DM
intake relative to what is offered declines. In a dairy
pasture, post-grazing heights greater than around 50
mm indicate that pasture is being wasted and the DM
intake of cows is not greatly increased, whereas at post-
grazing heights less than around 35 mm, the DM intake
of cows significantly declines (Roche et al. 2017b).

Current recommendations for grazing
management: the farm level

Macdonald & Penno (1998) reviewed grazing
management research and summarised a series of
decision rules to manage seasonal calving pastoral
dairy farms, focusing on achieving two important
targets to ensure a profitable and sustainable farm
system: cow body condition and average herbage mass
at start of calving. Average herbage mass provides a
measure of the amount of feed energy available within
the farm (assuming average metabolisable energy
values of pasture), and this is more important during
the calving period, as underfeeding around this time
impacts on herd performance for the remainder of the
season (Macdonald & Penno 1998).

However, these target pasture covers at calving
have been variously reported as 2000 (Bryant 1990),
2200 (Macdonald & Penno 1998), between 1800 and
2200 (Sheath & Clark 1996), between 2200 and 2400
(Macdonald et al. 2010), and 2500 (Claftey et al. 2019)
kg DM/ha. These differences in targets probably reflect
differences in stocking rates, calving rate, pasture
growth rates and amount of nitrogen (N) fertiliser and
supplementary feed used and may also reflect an impact
of climate change, which is altering seasonal pasture
growth. Current advice is to use a feed budget to more
accurately predict average pasture cover required at
calving on an individual farm basis (DairyNZ 2020).

To achieve these target pasture covers on farm,
the recommended pre-grazing mass for lactating
cows ranges from 2600 to 3200 kg DM/ha, and the
recommended post-grazing residual ranges from 1500
to 1600 kg DM/ha (McCarthy et al. 2014). Most of the
dairy grazing studies used rising plate meters (Earle &
McGowan 1979) to record pasture mass. Using the New
Zealand standard rising plate meter equation of “kg DM/
ha = average compressed pasture height x 140 + 500”
(DairyNZ 2008), this equates to pre-grazing heights of
75-100 mm compressed height (which, depending on
pasture density and stem content, probably equates to
85-110 mm sward surface height) and post-grazing
heights of 35-40 mm compressed height (probably
equating to 40-45 mm sward surface height). These

target pre-grazing heights fit within the recommended
80-100 mm sward surface heights for high-yielding
cows determined in a review of literature by Mayne et
al. (2000); at shorter heights, daily herbage intake was
reduced, and animal production declined (Mayne et
al. 2000). Furthermore, the target post-grazing heights
allow temperate grasses to retain their energy reserves
(Fulkerson & Donaghy 2001).

A decision support resource used by many dairy
farmers is the spring rotation planner, which was
developed in New Zealand for use in temperate
pastoral regions regardless of stocking rate, amount
of supplementary feed allocated, or cow breed
(Macdonald & Roche 2016). The rotation planner
allows farmers to manage their allocation of pasture
and rotation length either during the autumn and winter
period before spring calving, or from calving to balance
date (Macdonald & Roche 2016).

Grazing outside of these management
recommendations

Grazing rotation

Multiple studies using leaf stage as a criterion
for defoliation have concluded that repeated (>2)
defoliations less than the 2-leaf stage (ranging from
the 1-leaf to 1.5-leaf stage) reduce plant energy reserve
levels, tillering, root mass, DM yield of pasture and
nutritive value of herbage, and increase tiller and plant
death, and invasion of less-desirable plant species into
the pasture (Fulkerson & Slack 1994, 1995; Donaghy et
al. 1997; Donaghy & Fulkerson 1998, 2002; Fulkerson
et al. 1998; Turner et al. 2006a, b; Rawnsley et al. 2014;
Pembleton et al. 2017). The only instances where a
fast rotation (<2-leaf stage) could be beneficial are: 1)
during reproductive growth; 2) when rust fungus has
infected significant areas of pasture early in regrowth; 3)
when ryegrass growth has almost ceased and invading
summer grasses need to be controlled (Donaghy et al.
1997); or 4) when canopy closure is occurring early in
regrowth (Roche et al. 2017b).

In diploid perennial ryegrass, the onset of canopy
closure usually occurs at a pasture mass of around 3000
to 3500 kg DM/ha (Rawnsley et al. 2014), while in
tetraploid perennial ryegrass and annual (L. temulentum
L. or L. rigidum Gaudin) and biennial genotypes, the
onset of canopy closure is seen at pasture masses as
high as 3700 to 4000 kg DM/ha, due to their more
open growth habit (fewer, larger tillers, larger leaves).
Thus, the recommended pre-grazing target range for
pasture mass (2600 to 3200 kg DM/ha; McCarthy et
al. 2014) coincides with the onset of canopy closure
in diploid perennial ryegrass pastures. The use of
tetraploid ryegrass, or shorter rotation ryegrass, allows
the opportunity to graze higher pasture masses than
this (but still prior to, or at, canopy closure in those
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ryegrass types), while still achieving high utilisation
(i.e., consistent and even post-grazing residuals) and
animal production (Edwards & Bryant 2016). In a
grazing study comparing milk production from cows
grazing diploid and tetraploid perennial ryegrasses to
either between 2900 and 3200 kg DM/ha, or between
3800 and 5000 kg DM/ha, Bryant & Edwards (2012)
confirmed that milk production decreased by 0.14 kg
milksolids/cow/day when the diploid cultivar was
grazed at the greater mass range, but was unaffected
when the tetraploid cultivar was grazed at the greater

mass range.
Multiple studies have confirmed that in more
stressful environments (e.g., subtropical/tropical),

longer rotations (e.g., the 3- or 3.5-leaf stage) maximise
plant energy reserves and associated tillering and root
production, and therefore plant persistency and survival,
and enhance the ability of temperate species to reduce
the ingress of summer grasses (Fulkerson et al. 1993;
Fulkerson & Slack 1994, 1995; Donaghy et al. 1997,
Donaghy & Fulkerson 2002). Interestingly, Donaghy et
al. (1997) found that there was little impact of rotation
length (3-leaf vs. 1-leaf stage) on plant survival during
a subtropical winter in northern New South Wales,
Australia (where the climate is mild in comparison to
winter conditions in most pastoral temperate regions),
however there was a major impact on how ryegrass/
white clover (Trifolium repens L.) pastures survived
the subsequent harsher summer, with more perennial
ryegrass plants surviving summer (74 vs. 54 plants/m?)
and less tropical grass [primarily kikuyu, paspalum
(Paspalum dilatatum Poiret) and summer grass
(Digitaria sanguinalis (L.) Scop.)] plant incursion (46
vs. 60 plants/m?) under the 3-leaf winter rotation. In
other words, it was how the plants were ‘pre-treated’
prior to the major stress period (subtropical summer),
which had the most influence on their survival.

Delayed or deferred grazing
Under periods of increasing climatic stress (e.g., more
frequent and severe droughts as a result of climate
change), tiller mortality is likely to increase, with
detrimental subsequent effects on tiller density and
pasture productivity. Strategies are required that can
enhance pasture resilience by enabling tiller populations
to withstand, and recover from, these periods of stress.
One such strategy is the concept of ‘late control’
(Matthew et al. 2000), which involves removing a
paddock from grazing from mid-spring until early
summer, allowing anthesis to occur. Most of the
carbohydrate reserves are prioritised for seed-head
development and the production of new tillers is
suppressed (i.e., apical dominance; Jewiss 1972),
however, a small but biologically-significant amount
of carbohydrate accumulates at the base of the plant

for the growth of young tillers (Matthew 2002). When
the developing seed-head is decapitated following 6-12
weeks of regrowth, apical dominance is removed, and
the tiller buds can produce new tillers, fuelled by these
carbohydrate stores (Hampton et al. 1987; Matthew et
al. 1991). Although plot studies have demonstrated a
great deal of promise for late control (Hernandez Garay
et al. 1997a, b), the attainment of whole-farm benefits
in herbage production have been inconsistent (Bishop
Hurley et al. 1997; Da Silva et al. 2004). Also, from
a practical sense, when a manager is aiming to match
livestock demand to pasture supply, it can be difficult
to time the grazing so that it corresponds with anthesis.
Further, if these new tillers are subjected to drought
and other stresses over summer, they may not survive.
Nevertheless, more work investigating the balance
between above- and below-ground soil-pasture fluxes
during spring and summer would be warranted.

An alternative strategy to late control is ‘deferred
grazing’, where the removal from grazing is longer,
from mid-spring until mid-summer, after seed has
fallen (Tozer et al. 2020a). This avoids the difficulty
of timing the grazing specifically during anthesis and
enables pasture to accumulate in the paddock, that can
subsequently be grazed at the end of summer when
feed may be scarce, especially after a summer drought.
Although this pasture could also be conserved as silage
or hay, these are both more expensive options and also
may not be able to be implemented on hilly paddocks for
example, and thus, deferred grazing utilises principles
of ecophysiology in order to increase persistence and
resilience of pastures. Deferred grazing allows plants
to flower and set seed, and as was the case with late
control, carbohydrate accumulated in the tiller base can
be used for the development of new tillers in autumn,
once reproductive development has completed and
climatic conditions are conducive for tiller growth and
survival. While this practice has a short-term negative
impact on pasture nutritive value and utilisation
during the period in which grazing is deferred (Tozer
et al. 2020b), there may be substantial benefits for
tiller populations, pasture production and profitability
at a farm scale (Dowling et al. 1996; Waller & Sale
2001; Tozer et al. 2021a, b). Firstly, tiller densities in
the deferred pastures may increase through reseeding
(L’Huillier & Aislabie 1987) and/or increased tillering
from existing plants (Waller & Sale 2001). Reseeding
is more important under conditions of drought stress,
while the increased tillering from existing plants is
more important in a benign environment (Tozer et
al. 2020b). Secondly, associated with this increased
tillering is an increase in herbage production, which
can last for up to 12 months after the deferred period
in beef and sheep hill country pastures (Tozer et al.
2020b). The deferred pasture can also provide grazing
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at the end of a summer drought, which increases the
resilience of farms to climatic shocks. Thirdly, deferred
grazing can be used to control pasture nutritive value at
a farm scale and better match feed supply to livestock
demand. When paddocks are removed from the rotation,
livestock have a smaller effective grazing area and are
better able to utilise the spring pasture, where growth
often exceeds livestock demand (Suckling 1959). It can
also increase nutritive value by increasing the legume
content (e.g., Nie et al. 1996), although this depends
on the timing of closing and re-opening pastures to
grazing and on the other species present in the sward.
This enables livestock to better maintain pastures in
a high-quality vegetative state, such that pastures are
grazed at the 2- to 3-leaf stage. In this way, deferred
grazing integrates traditional pasture principles, which
focus on maintaining high-quality leafy material, and
additionally harnesses the plant’s reproductive cycle,
resulting in benefits for resilience at both the pasture
and farm scale.

Thus, while there are few reasons to rotationally
graze pastures faster than recommended with respect
to pasture persistence, there is evidence that the grazing
‘rules’ can be bent by grazing pastures at higher
masses than recommended, especially in the case of
annual, biennial and tetraploid ryegrass cultivars, and
for longer intervals than recommended (i.e., deferred
grazing), trading off loss of nutritive value at the level
of some paddocks with increased seasonal resilience at
the level of the farm.

Post-grazing residual
Previous studies (e.g., Mayne et al. 1987) reported
that lower post-grazing residuals resulted in reduced
milk production (13.7, 16.0 and 17.0 kg milksolids/
cow/day, from pasture grazed to 50-, 60- and 80-mm
residual sward heights, respectively). A feature of some
previous studies (e.g., Le Du et al. 1979; Mayne et al.
1987; Wales et al. 1998) was that when pre-treatment
pastures were homogenous, decreasing pasture
allowance by providing smaller grazing areas resulted
in reduced post-grazing residual. In an experiment
where pasture allowance was separated from post-
grazing residual (i.e., pasture allowance was similar and
post-grazing residual was varied), Lee et al. (2008b)
explored post-grazing residuals to compressed heights
(pasture measured with a rising plate meter) of around
40, 50 and 60 mm, and found only a minor effect of
post-grazing residual on milk production (23.4, 23.1
and 20.8 kg milksolids/cow/day, respectively), despite
consistent low post-grazing residuals (to approximately
20 mm) reducing annual DM yield (Lee et al. 2008a).
In terms of longer post-grazing residuals, a number
of studies have reported that more lax grazing in spring
(the period of surplus pasture) resulted in a decrease

in growth rates of steers (Dawson et al. 1981) and
lower milk production, ranging from 1 L/cow/day
(Hoogendoorn et al. 1985), to 2.2 L/cow/day (Michell
& Fulkerson 1987) and between 1 and 3 kg/cow/day
(Stakelum & Dillon 1990) of cows in the subsequent
summer. The ‘lax grazing’ ranged from 70 mm (Dawson
et al. 1981), to between 81- and 130-mm post-grazing
residuals (Stakelum & Dillon 1990), to pre-grazing
masses of 4680 kg DM/ha (Hoogendoorn et al. 1985),
and post-grazing residuals of 2600 kg DM/ha (Michell
& Fulkerson 1987). The reduced animal production
with more lax spring grazing was because pasture that
regrows from longer post-grazing residuals (>70 mm)
contains more stem and dead material, and has lower
digestibility (Hoogendoorn et al. 1985; Michell &
Fulkerson 1987; Stakelum & Dillon 1990; Pembleton
et al. 2017), leading to a reduction in pasture utilisation
(Dalley et al. 1999; Wales et al. 1999), compared with
the previously-defined more optimal residuals.

Grasses exhibit phenotypic plasticity (changes to
growth habit) when subjected repeatedly to either
high or low post-grazing residuals. Close grazing
(i.e., <30 mm height) naturally favours species such
as white clover, browntop (Agrostis capillaris L.) and
many broadleaved species [e.g., thistles, dandelion
(Taraxacum spp.), broadleaf plantain (Plantago major
L.), etc.] while the opposite is true of more lax grazing
(i.e., >80 mm height), which favours species with
more upright growth habit, including most pasture
grasses along with forbs such as plantain (Plantago
lanceolata L.) and chicory (Cichorium intybus L.).
Ryegrass is resilient across a range of post-grazing
residuals, exhibiting a more prostrate habit under close
grazing and a more upright habit under lax grazing.
However, continual adaptation by grasses to varying
post-grazing residuals limits their growth potential (Lee
et al. 2008a), by reducing the radiation-use efficiency
of the canopy, through increasing shading of newer
photosynthetically-efficient leaves by older leaves or
by increasing the amount of light intercepted by the
tiller base rather than the leaf (Pembleton et al. 2017).

In the longer term (over a 5-month period),
repeated lax defoliation (to 160 mm height) reduced
photosynthesis, through a loss in leaf area index due
to pseudostem development (which doubled from 84.9
to 170.7 g/m? as cutting height increased from 20 to
160 mm), and through reduced photosynthesis per unit
leaf area, possibly as a result of a higher proportion of
older leaves, or a metabolic compensation with more
severe defoliation pressure (Hernandez Garay et al.
2000). Conversely, repeated close defoliation (20 to
25 mm) reduces DM yield (Leafe & Parsons 1983;
Hernandez Garay et al. 2000; Lee et al. 2008a), root
growth (Evans 1971, 1973; Hernandez Garay et al.
2000; Lee et al. 2008a) and tiller density (Hernandez
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Garay et al. 2000; Lee et al. 2008a), and increases the
period of reliance on plant energy reserves (Davidson &
Milthorpe 1965; Fulkerson & Donaghy 2001), putting
plants at greater risk of death during adverse climatic
conditions and also necessitating a longer subsequent
rotation for plants to recover (Chapman 2016; Roche et
al. 2017b). To illustrate this last point, Chapman (2016)
reported data from pasture defoliated to 1500 kg DM/ha
(representing ‘target’ post-grazing residual) and 1150 kg
DM/ha (representing ‘overgrazing’). Pasture defoliated
to 1500 kg DM/ha reached maximum average growth
rate after 30 days of regrowth (= 2-leaf regrowth stage),
and ceiling yield (~3500 kg DM/ha) after 45 days of
regrowth (= 3-leaf regrowth stage), whereas pasture
defoliated to 1150 kg DM/ha had still not reached either
maximum average growth rate or ceiling yield after 45
days (Chapman 2016).

The results of Lee et al. (2008b) indicate that
consistent post-grazing residuals are the key to
maintaining animal production, and it is possible that
within a range of post-grazing residuals (possibly
between 40- and 70-mm compressed height), as long as
the post-grazing residual is consistent, there will be little
negative impact on either DM yield of pasture, or milk
production. However, based on the aforementioned
negative results of leaving residuals longer than 70
mm height, it would be wise to recommend that post-
grazing residuals not exceed this.

Table 1

Changes facing pastoral systems in recent
decades

Impacts of climate change

Climate change projections for New Zealand indicate
that temperatures will rise, rainfall and windfall
patterns will change (Table 1) and atmospheric carbon
dioxide (CO,) concentrations will increase (Ministry
for the Environment 2018). While the predictions
vary in other similar high-rainfall pastoral regions of
southern Australia and Ireland, the impacts are likely
to be similar and will affect pasture production, pasture
nutritive value and botanical composition. Sheep and
beef farming systems and low-input dairy farming
systems are likely to be most affected (Ministry for the
Environment 2001), as home-grown pasture is their
main feed source.

Pasture production (annual and seasonal)

There are conflicting arguments regarding the potential
effect of climate change on total annual pasture
DM yield. Many reports suggest that annual DM
yield could increase by up to 10-20% as a result of
warmer temperatures (particularly during winter), and
increased CO, concentrations leading to more efficient
rates of photosynthesis (Ministry for the Environment
2001). This is most likely to be the case in regions
like Southland, New Zealand, where by 2040 winter
temperatures are predicted to increase by approximately

Climate change projections for New Zealand (Ministry for the Environment 2018).

Climate variable Description of change

Change in 2090 Spatial and seasonal

variation

Mean temperature Overall increasing.

+3.0°C Warming greatest at higher
elevations. Warming greatest
in summer and autumn, and

least in winter and spring.

Minimum and maximum
temperatures

Overall increasing.

Increase up to 2°C. Greatest changes in higher
elevations, particularly for

maximum temperature.

Number of hot days (>25°C) Increase, particularly in

already warm regions.

Average 300% increase. Number of days increase

greatest in hottest regions.

Average rainfall Regional and seasonal

variation.

Winter decreases: Hawke’s
Bay and Canterbury. Winter
increase: Southland. Spring
decreases: Northland and Bay

of Plenty.
Drought Increase in severity and Increase up to 250 mm Increases most marked in
frequency. per year in potential already dry areas.
evapotranspiration deficit.
Wind Varies seasonally. Incidence More northeast airflow in

of extreme wind speeds
increasing.

summer. Strengthened
westerlies in winter. Greater
increases in wind speed in
southern half of North Island
and throughout South Island.
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1°C and annual rainfall is expected to rise by 2-4%
(Ministry for the Environment 2018). However, in a
global meta-analysis, Hovenden et al. (2019) found
that the impact of elevated CO, on pasture production
rose as mean spring rainfall increased but fell as mean
rainfall in other seasons increased. They concluded that
any potential increase in pasture yield due to elevated
CO, would be dependent on the site’s seasonality of
rainfall, and as such the predicted increase in pasture
yield could be substantially less than anticipated.

Alternatively, flowering date may be advanced by up
to 10 days as a result of higher temperatures (Bloor et
al. 2010) and elevated CO, concentrations (Maw et al.
2014). This could result in reduced peak spring pasture
growth rates, thereby reducing the potential amount of
excess pasture available for harvesting as hay or silage
and reducing annual pasture production. This will make
it more difficult for farmers to manage typical seasonal
feed shortages (summer and winter) and may require
adjustments in stocking rates and calving dates, or
greater use of more costly supplementary feed sources.

Other reports suggest that in eastern parts of New
Zealand (Hawke’s Bay, Bay of Plenty, Christchurch)
more variable rainfall patterns, a greater number of
hot days and increased intensity of summer droughts
may decrease pasture growth rates during summer and
autumn and therefore reduce annual pasture production
(Kenny et al. 2001; Lieffering et al. 2016). Moore &
Ghahramani (2013) demonstrated that changes in
the seasonality of pasture growth as opposed to total
pasture production required greater changes in farm
management strategies and stock policies. This suggests
that climate change is likely to have greater impacts on
farming systems in the warmer, eastern parts of New
Zealand.

Recent farm-system studies have highlighted the
impact of changing climate on pasture growth and the
subsequent possible changes to grazing management, at
both an operational and strategic level. At the strategic
level, a greater number of growing days during winter
and less frequent bouts of rain in summer in regions
such as coastal Taranaki and Waikato have motivated
some farmers to move calving dates forward (e.g.,
from July to June) to capture more days in milk before
the summer-dry takes effect, or alternatively change
from spring to autumn calving in an attempt to better
match pasture supply with herd demand (Jarman 2020).
Additionally, a 3-year farm systems trial established in
Waikato to validate the DairyNZ Forage Value Index
(FVI) at farm scale, has highlighted where traditional
operational pasture management practices may not
have achieved optimal performance at the pasture or
farm level. In the past 2 years, pasture growth rates
have been greater than expected during winter, and
following the current recommendations for winter

rotation lengths resulted in greater than target pasture
mass at calving. This in turn caused difficulties in
maintaining pasture quality and appropriate rotation
lengths, while achieving target pasture residuals and
animal performance in spring. This outcome was
exacerbated in the “high” cultivar farmlets (where
cultivars are selected from the FVI 4- and 5-star rating
bands for the upper North Island; see section: Impacts
of ryegrass selection and breeding) as these cultivars
have greater growth rates during winter (Chapman et al.
2017). If climate change continues in the same pattern
(i.e., milder winters), it may be necessary to shorten
the winter rotation length targets, and potentially the
pasture mass targets at calving. Farm system modelling
programs such as Farmax (Bryant et al. 2010) should
be used to identify the strategic (e.g., calving date,
stocking rate) and operational decisions (e.g., rotation
length and pasture mass) that may need to be changed
based on climate variations and cultivar performance.

Pasture species

Higher temperatures favour C, species at the expense
of C, species. Consequently, there has been an observed
increase in the proportion of kikuyu and paspalum
in pastures in the Northland and Waikato regions
of New Zealand (Field & Forde 1990; Ministry for
the Environment 2001) and modelling suggests that
these species will continue to invade further south
and increase in prevalence (Clark et al. 2001). These
subtropical C, pasture species are of lower nutritive
value than temperate C, species (Barbehenn et al.
2004), however they do provide animal feed during
periods of low soil moisture. Adjustments in grazing
management practices, including rotation length and/or
post-grazing residual height, will be required to both
minimise the spread of these species and to maximise
the animal performance from pastures which become
dominated by these C, species.

Elevated CO, levels due to climate change will
affect forage nutritive value, with studies observing
decreased forage N content and increased water-
soluble carbohydrate content (Dumont et al. 2015).
However, elevated CO, levels have also been shown
to favour legumes, with the proportion of white clover
in grass-based swards being greater at increasing CO,
levels (Teyssonneyre et al. 2002; Liischer et al. 2004).
However, this generalisation is based on short-term
studies (<5 years). In a long-running experiment (11
years) Newton et al. (2014) observed that the increased
legume content in the sward in response to elevated
CO, levels was not sustained, as sheep selectively
grazed out the legume, resulting in little difference in
pasture composition. Under more intensive grazing
conditions, it is therefore unlikely that climate change
will result in an increased legume content in grass-
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based pastoral systems unless plant breeders develop
new legume cultivars which are more persistent under
selective grazing, or if used in well-managed cattle
grazing systems which minimise selective grazing.
However, there will likely be an increased use of
lucerne (Medicago sativa L.) swards.

The distribution and abundance of pastoral weed
species will also likely alter with climate change (Potter
et al. 2009), however there is a paucity of studies in
this area.

Pasture establishment

Successful pasture establishment will likely become
increasingly challenging in the future. The more variable
rainfall patterns and increasing duration of summer
droughts (Ministry for the Environment 2018) may
reduce the window of opportunity, where soil moisture
levels and ambient temperatures are appropriate to
achieve successful autumn sowing. Similarly, wetter
winters may make it difficult to establish pastures in
early spring before soil moisture levels drop. There
will also be increased need for extension agronomists
to work with farmers to achieve successful pasture
establishment. Moreover, the increasing frequency
and intensity of summer droughts is likely to lead to
greater plant deaths and will possibly increase the
area of pasture needing replacing each year, further
exacerbating the dilemma.

Furthermore, as temperatures rise, the geographical
spread of pastoral insect pests is likely to expand and
their lifecycle is likely to speed up (Farrow et al. 1993;
Ward & Masters 2007). These trends in pest distribution
and biology may make it more difficult to establish
new pastures, further reducing pasture persistence.
Going forward, there will likely be an increased focus
towards sowing perennial pastures as opposed to short-
term pastures and managing them to maximise their
persistence. Further, weather forecasting technology
for agricultural purposes is continuing to develop
and improve (University of Tasmania 2015) and will
be helpful for farmers to achieve optimal timing of
sowing new pastures, thereby minimising the risks of
establishment failure.

Impacts of system intensification

Pastoral systems have intensified significantly since the
1960s to 1990s, when the early systems studies were
undertaken that form the basis of modern farm-level
grazing recommendations. There are now fewer, larger,
more highly-stocked farms, using greater quantities
of N fertiliser, irrigation water and supplementary
feeds (MacLeod & Moller 2006). This intensification
has resulted in a range of issues including increased
nutrient loads and pollution in waterways (McDowell
et al. 2011), increased production of greenhouse gases

(Pinares-Patifo et al. 2009) and negative impacts on soil
physical structure (Mackay 2008). For these reasons, it
is highly probable that pastoral agriculture will undergo
some de-intensification in the coming decades, or at the
very least, that past trends of intensification will neither
continue nor be maintained. However, it is likely that
future systems will remain more intensive than those in
the 1960s to 1990s.

In addition to the negative environmental impacts of
intensification, there may also be negative impacts on
pastures. While high stocking rates (more cows/ha), or
at least high stocking intensities at grazing (sufficient
animals in the paddock to graze it quickly) are an
integral part of successful rotational grazing, these high
stock numbers can also exacerbate periods of pasture
shortage, especially when animal demands are in
excess of pasture growth rates. While ideally, stocking
rate should be matched to the amount of forage that
the farm can produce, climatic volatility can reduce
pasture yield and result in overgrazing of pasture. The
immediate effect of higher animal demand relative to
pasture supply is lower than optimum post-grazing
residuals, and then if the higher demand continues, the
slower regrowth caused by the closer grazing will result
in a faster than optimal rotation, if no action is taken.
This is a classic situation where supplementary feed can
be provided to ensure that pasture is grazed optimally,
e.g., to ‘protect’ the post-grazing residual from being
grazed too closely, or to allow an optimal rotation to
be maintained, while animals continue to be well fed
(Roche et al. 2017b).

While supplementary feeding can be used to prevent
pasture being overgrazed, continual high inclusion of
supplementary feeds in pastoral systems can undermine
their profitability, as pasture consumption is the
single most important factor impacting on profit, as
mentioned previously. Therefore, in temperate pastoral
dairy systems, it is recommended that supplementary
feeds not be provided to cows unless post-grazing
residuals are lower than 35 mm compressed height,
which indicates that cows are being underfed (Roche
et al. 2017b). Further, New Zealand pastoral systems
will need to be increasingly flexible, by adjusting feed
demand through the sale or movement of livestock, or
adjustment in feeding targets or livestock condition
targets during times of restricted pasture availability.

Impacts of ryegrass selection and breeding

Perennial ryegrass plant breeders have achieved
marginal increases in genetic gain for DM yield, of
between 0.35% and 0.7%/year and no evidence of any
improvements in forage digestibility (McDonagh et
al. 2016). However, with increased demand for high-
quality forages, there will be greater requirement for
selection based on herbage quality (Tubritt et al. 2020).
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The introduction of economic merit indices for cows
has assisted beef and dairy farmers to identify the
most profitable genetics (Veerkamp et al. 2002) and
has benefited the beef and dairy industries for many
years. Perennial ryegrass cultivar selection indices are
a relatively new development in grassland science and
were first developed in Ireland through the Pasture
Profit Index (PPI; McEvoy et al. 2011; O’Donovan et
al. 2016), then later in New Zealand through the FVI
(Chapman et al. 2017), and in Australia through the
Australian FVI (Leddin et al. 2018). Within these
selection indices, perennial ryegrasses are ranked on
an expected economic value based on measurable traits
(seasonal yield, nutritive value, silage yield, persistency
and region) that have an economic effect on pastoral
systems (Tubritt et al. 2020). A new grass utilisation
sub-index has been developed and incorporated into the
PPI to aid farmers in identifying cultivars with superior
grazing efficiency, to increase grass utilisation on farm
(Tubritt et al. 2020). The New Zealand FVI does not
include a similar trait, because research by Griffiths et
al. (2020) found no consistent evidence of any effect
of phenotype (morphology or heading date) on milk
production in dairy cows, that would add value to the
FVI additional to that attributed to metabolisable energy.

Differences in the grazing efficiency of perennial
ryegrass cultivars influence the level of grass utilisation
on farm, due to specialist traits possessed by certain
cultivars that make them better adapted to grazing
systems (Byrne et al. 2018). Earlier-heading cultivars
display earlier and more rapid declines in digestibility,
which can make them less suited to efficient mid-season
grazing, however, their high spring growth makes them
suitable for specialised silage production (Humphreys
& O’Kiely 2006). The move by farmers to select
ryegrasses that have an increased grazing efficiency,
with a superior nutritive value (Tubritt et al. 2020), has
resulted in an increase in the proportion of late-heading
cultivars. Late-heading cultivars account for 78% of
perennial ryegrass cultivars listed on the PPI in Ireland
(Department of Agriculture, Food and the Marine 2020),
an increase of 57% since 1982 (Grogan & Gilliland
2011). Late-heading cultivars account for 63% of all
cultivars listed on the New Zealand FVI (DairyNZ
2020). Late-heading cultivars delay reproductive
development until early/mid-summer (Gately 1984)
and tend to maintain their green leaf proportion later
into the growing season (Gilliland et al. 2002), resulting
in a higher and sustained herbage nutritive value with
further beneficial effects on herbage intake and milk
production (O’Donovan & Delaby 2005).

The PPI and FVI have informed farmers’ decisions
on selection of ryegrass cultivars, which may increase
demand for a smaller number of cultivars. This is
evidenced by the dominance of later-heading ryegrass

cultivars present on the PPI and FVI. This can impact
on the seasonal growth curve of pasture, with highly-
ranked cultivars exhibiting greater growth during
winter (Chapman et al. 2017) and later-heading
cultivars producing higher yields later in the spring/
carly summer compared with earlier-heading cultivars,
although total annual yield is similar (Gilliland et al.
1995). These changes in seasonal growth patterns might
be expected to impact on the achievement of target
farm pasture covers throughout the season. The impact
of the PPI and FVI have not yet been seen in relation
to plant breeding, as the release of a new cultivar is the
culmination of a 10-20 year process (Conaghan 2019).
Currently, selection indices are only available
for ryegrass species (PPI/FVI), however due to the
increased use of other species on pasture-based farms,
further selection indices may be required to aid the
industry in their selection. For example, white clover,
due to its wide climatic range, high nutritive value of
herbage, and ability to fix atmospheric N and thereby
reduce the dependency on chemical N inputs on farm,
has made it the most important pasture legume in
temperate regions (Frame & Newbould 1986).

Use of diverse pasture species

The adoption of multiple pasture species in a diverse
pasture mix has become an increasingly popular
way to combat environmental challenges, from the
perspective of both climate and nutrient management
(Cranston et al. 2020). When sown to create a diverse,
multispecies pasture, the seed mix typically contains
three or more species and species which can be
selected to represent functional groups across a range
of forage grasses, herbs and legumes. Complementary
effects in resource use have shown pastures with two
or more species capable of greater yields and improved
weed suppression compared with monocultures
(Sanderson et al. 2005; Black et al. 2017). Inclusion
of herbs such as plantain into pasture mixtures is
expected to reduce nitrate leaching from soils (Carlton
et al. 2019). Diverse pastures with multiple species
will continue to be important in the future, though the
choice of species and their management will likely
vary considerably (Pembleton et al. 2015). Applying
appropriate decision rules for grazing management of
these species mixtures presents a potential challenge
for future pastoralists. Because pastures tend to
become dominated by one or two species, fertiliser
and grazing management practices which sustain the
biodiversity of diverse pastures and encourage high
productivity may well require bespoke solutions
depending on the pasture type and the environment.
Ultimately, selection of species for diverse pastures
will need to consider the establishment and grazing
management requirements of all species within the
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mix. The challenge of managing diverse pastures in a
commercial setting was evidenced recently in a survey
of farmers in Canterbury and Waikato who had tried
to incorporate plantain with mixed results (Bryant et
al. 2019; Dodd et al. 2019). Realistically, the dominant
grass species’ grazing management will likely take
priority over the other species present in the mixture
as the consequences to persistence, productivity or
nutritive value will likely outweigh any benefit from
the species mixture. In New Zealand, Ireland and
southern Australia, most dairy farm systems are built
around management of perennial ryegrass-dominant
pastures, and as this review attests, there is potentially
some flexibility in how to manage these pastures.
Furthermore, there may be greater flexibility in grazing
management of companion legumes (particularly
lucerne in spring) than once thought (Teixeira et al.
2007). Persistence of companion species beyond 3 or
4 years may not be necessary to achieve benefits from
diverse pasture mixtures if a regular (c.a. 10-12 years)
pasture renovation program is maintained (Pembleton
2015). Recent work on re-establishment methods for
herb species (e.g., plantain) within grass pastures has
also shown promise (Raedts & Langworthy 2020),
reducing the need for long-term persistence within a
mixture.

Conclusions

Impacts of climate change, along with system
intensification and ryegrass cultivars that are different
from those used when the early farm system studies
were undertaken to develop modern farm-level grazing
recommendations, may necessitate a rethink of those
grazing recommendations, and these are listed in the
following examples.

Higher pasture masses than currently recommended
can be targeted at a paddock level where annual,
biennial and tetraploid ryegrasses are sown, as long
as a consistent post-grazing residual is maintained. In
contrast, ata farm level, it is possible that faster rotations,
and lower target pasture covers around calving, would
avoid anecdotal issues in recent years of a loss in
pasture quality and difficulty in maintaining consistent
post-grazing residuals and animal performance in
spring due to milder winters, particularly with ryegrass
cultivars selected for greater winter growth.

Longer grazing rotations than recommended, well
beyond the 3-leaf stage, could be used in selected
paddocks (i.e., deferred grazing), to trade off loss
of nutritive value at the paddock level for increased
seasonal resilience at the farm level.

Consistency of post-grazing residuals was highlighted
as the key to maintaining animal production, with no
benefit to having shorter post-grazing residuals than
recommended. However, it is possible that longer

residuals, even up to 70 mm (i.e., almost double
the recommended height), might benefit root depth,
energy reserves and plant survival during periods
of high stress (e.g., heatwaves, droughts). However,
early identification of stress periods is important, as
management of pastures just before stress has more
influence on plant survival than (within reason) how
pastures are managed during the stress period.

Lastly, the use of more diverse pastures, to combat
both climate and nutrient challenges, may require
specific management that better suits dominant species
other than perennial ryegrass.
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