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Abstract
Precision farming requires data on resource status at a
very fine, within-paddock scale which is impractical to
collect by traditional sampling methods. This paper
demonstrates the potential of a modified field hyperspectral
radiometer (spectro-CAPP) to predict and map spatial
distribution patterns of herbage biomass and standing mass
of nitrogen (N), phosphorous (P), potassium (K), and
sulphur (S) in a 2.8 ha paddock on a Taupo hill country
farm in November 2006. A partial least squares (PLS)
regression model using a continuum-removed data
transformation procedure gave an excellent prediction of
the standing masses of N, P, and S (R2>0.893); a good
prediction of standing biomass (R2 = 0.857); and moderate
prediction of standing K (R2=0.809). In each model the
transformed data gave better predictions than the raw
reflected spectral data. Using geostatistical analyses,
pasture parameters were moderately or strongly spatially
dependent with the average size of dry matter and nutrient
biomass ‘patches’ ranging from 10 to 59 m. These results
suggest that a 5 m interval grid sampling strategy would
be suitable to develop a site-specific fertiliser application
map in this hill environment, at a similar time of year.
Keywords: geostatistical analysis, pasture quality,
semivariogram, spatial distribution

Introduction
For efficient pasture management, quantitative information
on pasture biomass and quality and the spatial variation of
these within and between fields is important. Intake of
dry matter (biomass, BM), nitrogen (N), phosphorous
(P), potassium (K) and sulphur (S) can each affect animal
performance while low levels of these minerals in pasture
can indicate low soil availability of these nutrients for
plant growth. To refine management practices, farmers
require information on spatial patterns of soil fertility so
that plant nutrient requirements can be managed at the
paddock or within-paddock scale using variable rate
fertiliser application technologies (K. Betteridge et al.
unpublished). Small scale sampling of biomass and
nutrient mass might also improve feed planning and grazing
strategy decisions, but this requires techniques that can
measure pasture status quickly, cost effectively, and
continuously across the paddock.

Hyperspectral radiometers can be used to measure the
reflected light spectra of the pasture canopy to estimate
pasture BM and quality (Kawamura et al. 2008; Mutanga
et al. 2004; Schut et al. 2005; Starks et al. 2006). Typically
these studies have focused on N, acid detergent fibre
(ADF) and neutral detergent fibre (NDF) concentrations
in fresh herbage. Nitrogen (Johnson 2001), ADF and
NDF (Kawamura et al. 2008; Schut et al. 2006) can be
predicted with >60% accuracy in the field, but to date the
prediction of P, K and S, using canopy reflectance, has
received little attention (Ferwerda & Skidmore 2007;
Mutanga et al. 2004).

Spectral signatures of pasture need to be taken in cloud-
free conditions to ensure a uniform quality of incident
light, but this is a major limitation in New Zealand. The
canopy pasture probe (spectro-CAPP), based on a
hyperspectral radiometer (an ASD FieldSpec Pro FR
Analytical Spectral Devices Inc. (ASD), Boulder, CO,
USA) with a built in light source and a dark enclosure that
is placed over the target pasture (Sanches et al. in press),
circumvents this problem and was used in this study. The
aims of this study were to estimate standing BM (kg DM/
ha) and herbage mass of the nutrients N, P, K, and S (kg
DM/ha) with the spectro-CAPP, and to map patterns of
spatial distribution of these parameters within a target
paddock.

Materials and Methods
Study sites
This trial was conducted on the Motere Landcorp Ltd
farm on the western side of Lake Taupo (Fig. 1). Eight
paddocks of differing fertility status were selected to
maximize the ranges in plant mass, chemical and
physiological states. One 2.83 ha (target) paddock of these
eight paddocks, was also used to develop the spatial
distribution maps of standing BM and standing mass of
nutrients (Fig. 1). The elevation ranged from 572 to 590
m above sea level.

Field reflectance measurements
Hyperspectral reflectance spectra were collected from 100
quadrats (0.09 m2) spread across the eight paddocks,
during 29-31 November 2006. The ASD spectro-
radiometer has a spectral sampling interval of 1.4 nm in



the 350–1000 nm range, and 2 nm in the 1000–2500 nm
range. The spectral resolution (full-width-half-maximum;
FWHM) is 3 nm in the 350–1000 nm range, and 10 nm in
the 1000–2500 nm range, which were calculated to 1 nm
resolution wavelengths (derived wavebands) for the output
data, using software (RS2 for Windows®; ASD, Boulder,
CO, USA).

In addition, separate spectral readings from 201 sites
within the target paddock were gathered for the purpose
of mapping the pasture parameters (see Fig. 1). The
location of spectral measurements was determined using
a very high resolution differential GPS (GeoExplorer 3,
Trimble Navigation, Ltd., Sunnyvale, CA, USA).

The spectro-CAPP took 30 spectral readings of the
pasture canopy at each sample site and was calibrated
with a 295 mm × 295 mm matt white ceramic tile (San
Lorenzo Blanco Niveo) (Sanches et al. in press).

Plant sampling and chemical analysis
Except for the 201 sites in the target paddock, all vegetation
in the 0.09 m2 (30 cm × 30 cm) ‘reference’ quadrats was
clipped to ground level after measuring reflectance. Forage
was dried at 60°C for 48 hours to determine BM and
chemical analyses of dried forage were carried out at Hills
Laboratory, Hamilton. The N concentration (mg/g) was
measured following Kjeldahl digestion (Basson 1976).
Estimates of K, P, and S concentration (mg/g) were made
using an auto-analyser (TJA 1997). Herbage mass of N,
P, K and S was the product of mineral content (%DM)
and BM (kg DM/ha).

Spectral data processing
Spectral data of 2001 derived wavebands between 400

nm and 2400 nm were used in the analyses. Four of the
100 reference (training + test) samples were eliminated
as outliers based on a principal component analysis (PCA)
(Macho et al. 2001).

Canopy reflectance and the continuum-removed
derivative reflectance (CRDR) (Mutanga et al. 2004)
datasets were compared. The continuum is removed by
dividing the reflectance value for each 1 nm derived
waveband in the absorption feature by the reflectance
level of the continuum line (convex hull) at the
corresponding wavelength (Fig. 2a). Three regions (400-
750, 920-1080, and 1115-2235 nm) were carefully
selected to calculate continuum-removed features. The
CRDR transformed data were calculated by applying a
Savitzky-Golay smoothing filter (Savitzky & Golay
1964) (Fig. 2b). A third-order, seven-band moving
polynomial was fitted through the original reflectance
signatures. The parameters of this polynomial were
subsequently used to calculate the derivative at the centre
waveband of the moving spline window.

Statistical data analysis
The reference dataset was split into two equal-sized
subsets; the training data (n=48) was used for making
PLS calibration models; and test data (n=48) for testing
purposes. In this case, the test dataset was created by
taking every second sample from the sorted pasture
parameters of interest (e.g. 2, 4, … , 94, 96 as the test
data) such that the distribution patterns of the two datasets
were similar. PLS regression analyses were performed
using reflectance and CRDR datasets to predict BM and
mass of nutrients (N, P, K, and S) using PLS Toolbox
ver. 7.2 (Eigenvector Research, Inc., Manson, WA) in

Figure 1 Locations of eight paddocks on the western side of Lake Taupo, and the sampling map showing the
201 spectral reading sites superimposed on the digital elevation model (DEM) of the target, sheep
paddock.
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Matlab software ver. 7.4 (Mathworks Inc., Sherborn,
MA).

The accuracy of the calibration models was evaluated
by the coefficient of determination (R2), root mean
squares error of prediction (RMSEP) and the ratio of
prediction to deviation (RPD) (Williams 2001). The RPD
value was the ratio of standard deviation (SD) in the test
data to the standard error of prediction (SEP) or standard
error of cross-validation (SECV), which was used to
evaluate how well the calibration model could predict
quantitative data. Based on RPD values, five levels of
prediction accuracy were considered: (1) <1.5, the
calibration is useful; (2) 1.5-2.0, there is a low possibility
of distinguishing between high and low predicted values;
(3) 2.0-2.5, approximate quantitative values of prediction
can be made; (4) 2.5-3.0, quantitative prediction values
are good, because the prediction error is reduced to less
than half of the error made when using the mean
composition; (5) >3.0, prediction values are excellent
and are acceptable for analytical purposes in most near
infrared spectroscopy (NIRS) agricultural applications.

Mapping
Spatial distribution maps of BM and mass of nutrients
(N, P, K, and S) were generated from the separately

measured 201-site spectro-CAPP and GPS datasets of
the whole paddock by applying the calibration models. A
geostatistical approach was used to model the optimal
map grid size in the paddock using ‘gstat’ package ver.
0.9-40 (Pebesma 2004) on R statistical software ver. 2.5.1
(R Development Core Team 2007). Semivariances were
first calculated to determine the spatial dependence within
pasture parameters, then kriging was used to map the
spatial distribution of pasture parameters within the target
paddock. The nugget (c

o
) value of a semivariogram

indicates the random error in the dataset whereas the lag
(h) indicates the variances explained by the spatial model.
A low ratio of c

o
: h (k) indicates the data have a very

strong spatial structure whereas a high k value suggests
the spatial structure is weak because of the large amount
of random variation in the data. The semivariogram ‘range’
shows the average distance (or patch size) over which
there is no significant change in value of the parameter. A
small range requires intensive sampling to adequately
represent the heterogeneous distribution of a parameter,
and vice versa.

Results and Discussion
Table 1 shows results of the descriptive analysis for
herbage mass and concentration of mineral components

Figure 2 Mean canopy reflectance spectrum (solid line) and its continuum line (dashed line) (a), used to derive
the continuum-removed derivative reflectance (CRDR) (b).
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in the training (n = 48) and test (n = 48) datasets. Biomass
at the start of this trial was unusually high, reflecting
excellent spring growth at this time. The quality of the
pasture was assessed visually as being high. Mean
concentrations of P and K were in the optimal range for
milking dairy cattle, but N and S would be classed as
deficient (Roberts & Morton 1999). The lowest values in
the range for each mineral were very deficient based on
the milking cow standard, thereby providing a very good
spread of data from which to derive calibration curves.

PLS calibration results between spectro-CAPP spectra
and herbage BM, and masses of nutrients are shown in

Table 2. In the training dataset, R2 values for standing
BM, and masses of N, P, K, and S were 0.902 to 0.974,
0.951 to 0.970, 0.944 to 0.976, 0.748 to 0.865, and 0.944
to 0.976, respectively. The optimum number of PLS
factors selected for the model to predict pasture parameters
ranged between 3 and 8, based on the leave-one-out cross
validation process. As expected, lower R2 values and larger
prediction errors (RMSEP) were obtained for all
parameters in the test dataset, compared to the training
dataset. Higher R2 values for standing masses of BM
(0.857), and masses of N (0.895), P (0.943), K (0.809),
and S (0.943) were derived when using CRDR data for
estimating all pasture parameters compared to R2 values
based on reflectance data.

Statistical quality and future applicability of a calibration
can be judged from the RPD value (Williams 2001). An
RPD value greater than 3.0 is considered acceptable for
analytical purposes in most of NIRS applications for
agricultural products. However, some reports state that
for field analysis an acceptable RPD value would be 2 or
higher (Cohen et al. 2005). In the present study, CRDR
data used in the PLS model gave an excellent prediction

Table 1 Descriptive analysis for herbage mass of biomass (BM), nitrogen (N), phosphorus (P), potassium (K)
and sulphur (S), and concentrations of N, P, K and S in the training and test subsets.

Pasture parameters ———— Training data (n = 48) ———— ————— Test data (n = 48) —————
Mean Range SD CV Mean Range SD CV

Herbage mass of
BM (kg DM/ha) 4064.5 791 - 9233 2359.1 59.7 3967.0 753 - 9086 2419.2 59.9
N (kg DM/ha) 96.3 20.3 - 212.2 52.2 55.0 94.2 13.3 - 192.1 51.2 55.2
P (kg DM/ha) 16.1 2.3 - 39.2 10.3 64.5 15.8 1.6 - 36.9 10.1 64.9
K (kg DM/ha) 86.5 11.0 - 233.7 59.7 69.0 89.8 1.3 - 294.2 64.4 72.2
S (kg DM/ha) 8.7 1.7 - 19.9 5.2 61.3 8.5 1.1 - 19.1 5.1 62.0

Concentration of
N (mg/g) 25.2 16.7 - 41.5 5.7 22.6 24.9 16.3 - 38.7 5.4 21.7
P (mg/g) 3.9 2.4 - 5.2 0.7 19.3 3.8 2.0 - 5.1 0.7 19.9
K (mg/g) 21.1 0.3 - 34.3 5.5 29.9 20.8 0.2 - 32.9 5.6 30.3
S (mg/g) 2.2 1.4 - 3.2 0.4 19.0 2.1 1.3 - 3.2 0.4 19.1

SD: Standard deviation; CV: Coefficient of variance [= standard deviation / mean × 100 (%)]

Table 2 Number of PLS factors (Comps), coefficients of determination (R2), root mean square errors of
calibration (RMSEC) and prediction (RMSEP) in the training and test data, respectively, and the ratio of
prediction to deviation (RPD) for Reflectance and CRDR spectral datasets used to predict herbage
biomass (BM), and masses of N, P, K, and S (kg DM/ha).

Pasture Spectral ————— Training data ————— ————— Test data —————
parameter data type Comps R2 RMSEC R2 RMSEP RPD

BM Reflectance 6 0.902 750.78 0.812 1,029.19 2.30
CRDR 5 0.974 374.50 0.857 930.94 2.57

N Reflectance 8 0.951 11.48 0.893 18.87 2.85
CRDR 5 0.970 8.90 0.895 17.14 3.04

P Reflectance 7 0.944 2.41 0.913 3.16 3.23
CRDR 5 0.976 1.59 0.943 2.43 4.20

K Reflectance 4 0.748 29.61 0.770 30.83 2.07
CRDR 3 0.865 21.71 0.809 28.43 2.24

S Reflectance 7 0.944 2.41 0.913 3.16 3.23
CRDR 5 0.976 1.59 0.943 2.43 4.20

Table 3 Parameters of the spherical semivariogram
models used.

Pasture Semivariogram Range Ratio k
parameter model type (a) (c0 /(c0+c))

BM Spherical 58.7 0.732
N Spherical 17.4 0.082
P Spherical 17.0 0.541
K Spherical 16.6 0.577
S Spherical 10.6 0.390
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of the standing masses of N, P, and S (RPD > 3.0), but
gave only a moderately good prediction of standing
biomass (RPD = 2.57). Although relatively lower
prediction accuracy was achieved for standing K, it is still
possible to make quantitative predictions using CRDR
(RPD = 2.24).

Two parameters estimated in semivariograms are shown
in Table 3. These were obtained by applying the PLS
models to separately acquired spectro-CAPP data (CRDR
datasets) in the target paddock. The k parameter for
herbage BM, and masses of N, P, K, and S was 0.73,
0.08, 0.54, 0.58 and 0.39, respectively. The very low k
value of N indicates a large lag h (variance explained by

the spatial model) and the sampling density closely
matched the spatial variation. However, the large k value
for standing BM suggests that there is considerable
random variation and/or recording error in these data.

The parameter range ((a), Table 3) of the semivariogram
for BM was much wider (58.7 m) than for the other
parameters (10.6-17.4 m). The small ranges indicate
spatially dependent data which are highly heterogeneous
within a paddock and require more intensive sampling
than for BM with its large range value. Data with a large
range are less spatially dependent because the rate of
change across the paddock is more gradual; and sampling
intensity can also be less.

Figure 3 Spatial distribution maps (5 m grid cells) of herbage biomass, and standing masses of N, P, K, and S
in the target paddock.
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K. Kawamura et al. (unpublished) have demonstrated
that soil P fertility status can be predicted from knowledge
of pasture P status. Thus, by producing a spatial
distribution map of pasture P status, as we have in this
study, we can also infer the soil Olsen P status at fine,
within-paddock resolution. This lack of soil fertility
resolution has been a major limitation to developing
precision fertiliser requirement maps to optimise pasture
response to fertiliser, financial returns and environmental
outcomes (Betteridge et al. unpublished).

Kerry & Oliver (2003, 2004) pointed out that the
sampling interval should be less than half the range of
spatial variation in order to ensure that spatial dependence
can be accommodated in future sampling. If the variation
shows strong continuity, as with standing BM in our
target paddock, the range parameter might be so large in
relation to the size of the field, that sampling density based
on the range would be too small to make a reliable spatial
distribution map of BM. In the target paddock the
minimum value of range was 10.6 m for standing S mass.
Thus a sampling interval of about 5 m would be suitable
to make a useful spatial distribution map. Therefore, 5 m
grid cell maps of herbage BM and the masses of N, P, K,
and S were generated in the target paddock using the
ordinary kriging method (Fig. 3). These results not only
give practical information to farm consultants when
considering variable rate fertiliser strategies, but also
provide useful insights relating to sampling strategies when
collecting information for any similar agricultural situation
requiring site specific data collection. Furthermore, such
maps created using a grid cell sampling method allows
the information to be used in further analyses within a
geographic information system (GIS) with regard to
environmental factors, such as soil fertility status, grazing
intensity, elevation, slope, etc., (Kawamura et al. 2005)
and excreta distribution patterns. Future study will examine
environmental effects on spatial distribution patterns of
pasture BM and mineral components using GIS
technologies.

Conclusions
This study demonstrates the potential of hyperspectral
imaging using the spectro-CAPP and PLS regression for
estimating and mapping herbage biomass and the standing
mass of four major nutrients, without confounding due to
cloud cover. We also compared the predictive ability for
these parameters between two spectral datasets; reflectance
and CRDR, used in PLS regression analyses. Pasture
parameters were estimated with lower RMSEP and higher
RPD values with CRDR data transformations, providing
more reliable estimates than from raw reflectance data.
Based on geostatistical analysis and the need to sample at
half the semivariance ‘range’, extracting data from aerial
or satellite hyperspectral images at 5 m spacings across

the target paddock will enable the creation of site-specific
fertiliser application maps in hill country and lowland
pastures. These spatial maps of pasture parameters can
also be used to help interpret behaviour characteristics of
animals fitted with GPS tracking devices.
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