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Abstract
Pasture biomass estimates are valuable to farmers, 
and satellite pasture biomass estimates can potentially 
provide the required data for less time and labour. 
However, the accuracy of satellite estimates of pasture 
biomass can be affected by the botanical composition 
of the pasture. In this study, botanical composition 
data were combined in linear regression models and 
a general additive model with on-farm and satellite 
pasture biomass estimates to quantify the increase in 
predictive power from including botanical composition 
data. The inclusion of botanical composition data 
improved the accuracy (model R2) of the satellite 
pasture biomass estimation; the smallest increase was 
0.035 (from 0.725 to 0.760) and the largest increase 
was 0.111 (from 0.599 to 0.710). 

Improving the accuracy of satellite estimations of 
pasture biomass will allow farmers to make more 
timely and accurate grazing management decisions.

Keywords: NDVI, pasture management, stepwise 
linear regression, generalised additive model

Introduction
Monitoring of pasture biomass is necessary for farmers 
to make timely tactical grazing management decisions 
(Neal et al. 2017). Traditional methods for measuring 
pasture biomass, such as rising plate meters and the 
C-DAX Pasture Meter, are time-consuming, labour 
intensive and subject to operator error (Chapman et al. 
2014). Satellite-based monitoring methods that utilise 
spectral vegetation indices can provide extensive spatial 
coverage data for farmers (Ali et al. 2016). One widely 
used index is the Normalised Difference Vegetation 
Index (NDVI; NASA 2000). However, these indices 
often vary in the accuracy of their pasture biomass 
estimates (Anderson & McNaughton 2018). They also 
suffer from a saturation effect at high biomass levels 
(Gu et al. 2013). 

The botanical composition of pasture is one 
possible source of variation in accuracy of biomass 
measurements. Perennial ryegrass (Lolium perenne) 
and white clover (Trifolium repens) are the most 
common species in New Zealand dairy pastures, but not 

the only species, and the proportions of ryegrass and 
white clover may vary temporally and spatially within 
a paddock (Chapman et al. 1996). Steltzer and Welker 
(2006) demonstrated that the ability to predict leaf 
area index (LAI) from NDVI is affected by botanical 
composition, which suggests that the ability to predict 
pasture biomass could be similarly affected.

If botanical composition has a consistent effect on 
satellite pasture estimates, then including botanical 
composition information in the estimation model 
should show a concomitant improvement in model 
accuracy. If such an improvement were sufficiently 
great, it would motivate an investigation into the 
frequency and precision of botanical composition data 
required to produce this improvement. 

The aim of this investigation was to determine the 
effect of the inclusion of botanical composition on the 
accuracy of satellite estimates of pasture biomass, using 
NDVI and a range of models based on mean reflectance 
values.

Materials and Methods
Study location and overall botanical composition
In total, sixty 0.5-ha paddocks on the DairyNZ Ltd 
Scott Farm (Hamilton; 37.460S, 175.220E; elevation 
40 metres above sea level) were used in this study for 
the collection of botanical composition and pasture 
biomass data. Data were collected on 107 dates 
between October 2017 and January 2019. The pastures 
used were predominantly perennial ryegrass–white 
clover, on Matangi silt loam and Horotiu silt loam soil 
types. The pastures were sown in autumn 2016, 2017 
and 2018.

Terrestrial data collection
The biomass (kg DM/ha) of pasture in each paddock 
was estimated by the same two people by visual 
assessment undertaken during a weekly farm walk 
similar to the method described by O’Donovan et 
al. (2002). In all, 4200 paddock estimates of pasture 
biomass were provided. 

Botanical composition was estimated seasonally 
(August, October, November, January and April) for 
each paddock, as follows. Directly before grazing, 

ISSN 2463-2872 (Print) ISSN 2463-2880 (Online) https://doi.org/10.33584/jnzg.2019.81.367

Workshop on New Technology



250

representative pasture herbage samples were collected. 
The samples were collected from four 10 m by 1.5 m 
harvester cuts within each paddock, above a cutting 
height of 4 cm. Herbage samples were transferred to 
a laboratory then dissected into perennial ryegrass 
leaf, perennial ryegrass reproductive stem, annual 
ryegrass (Lolium multiflorum), white clover, broad-
leaved weeds, other grass species and dead material of 
all species and then oven-dried separately at 95°C to 
a constant weight (this process took approximately 48 
hours). Botanical composition was highly variable, but 
perennial ryegrass leaf was the predominant component 
(Table 1). A total of 355 botanical composition records 
were collected.

Satellite imagery collection
All available satellite images were obtained from 
Planet Labs’ constellation of Dove satellites (Planet 
Labs 2015) for the same time period (456 days). We 
received images for 199 days; we were not sent any 
images that were heavily overcast or impacted by 
satellite malfunctions. The images were corrected by 
Planet Labs for surface reflectance (Planet Labs 2018) 
to remove atmospheric artefacts, making the images 
more comparable across time, and across different 
satellites. This resulted in 304 usable images, as there 
were 39 days with two satellite images, and 9 with three 
images. The resolution of the Dove satellites is 3.125 
m, or approximately 878 pixels per hectare, and the 
spectral bands of their imagery comprise blue (455–515 
nm), green (500–590 nm), red (590–670 nm) and near-
infrared (NIR, 780–860 nm)

The full dataset contained 14,438 records. Each 
record contained mean values of red, green and blue 
(RGB) and NIR reflectance for a single paddock for 
a single day, as well as a timestamp, an automated 
estimate of cloud cover, and the identifier of the satellite 
from which the image was obtained. 

Dataset construction
Each satellite measurement for a paddock that occurred 
within two days of a visual biomass measurement for 
that paddock was associated with the corresponding 
biomass measurement. When this process was 
complete, the dataset consisted of 2868 matched 
records. The records in this dataset were then combined 
with botanical composition records. For each paddock, 
biomass/satellite records that occurred within 20 days 
of a botanical composition record were matched with 
that record. Range limits of 10 and 15 days were 
also investigated (data not shown), but results in the 
subsequent analysis were similar, so the selection that 
provided the largest dataset was used. This resulted in a 
dataset with 407 records.

Sixty-seven records with biomass measurements 
greater than 3000 kg DM/ha were removed from the 
dataset, so that the well-known NDVI saturation effect 
did not confound the investigation. As a sense check 
on the data, NDVI was calculated for each image, 
and compared with the measured biomass. When 
extreme outliers in this relationship were observed, the 
corresponding images were visually inspected, and in 
all cases were found to be due to cloud in the image 
that had not been detected by the automated system, 
or to the satellite estimate and biomass measurement 
taking place each side of a grazing event (so that the 
one took place pre-grazing and the other post-grazing). 
These data points were also removed. This process 
resulted in a dataset of 245 records with visual biomass 
measurements, satellite data, and botanical composition 
data. Just over half (53%) of these data points occurred 
between October 2018 and January 2019; the remainder 
were approximately evenly distributed across the period 
October 2017 to September 2018.

Statistical analyses
All analyses were conducted using R version 3.5.1 (R 
Core Team 2018). NDVI values were computed for the 
satellite records of each paddock as follows:
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All analyses were conducted using R version 3.5.1 (R Core Team 2018). 
NDVI values were computed for the satellite records of each paddock as follows: 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 =  𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑅𝑅𝑅𝑅𝑅𝑅
𝑁𝑁𝑁𝑁𝑁𝑁 + 𝑅𝑅𝑅𝑅𝑅𝑅 

where NIR is near-infrared reflectance and Red is reflectance in the red band. 
The following variables were used in the creation of linear models with 

respect to the measured biomass: NDVI, red reflectance, blue reflectance, green 
reflectance, NIR reflectance, perennial ryegrass leaf proportion (RL), perennial 
ryegrass reproductive stem proportion (RS), annual ryegrass proportion (AR), white 
clover proportion (WC), broad-leaved weeds proportion (W), other grass species (O) 
and dead vegetative matter of all species (D); the botanical composition data was 
taken from the nearest sample up to 20 days before or after the satellite measurement.  

A Generalised Additive Model (GAM) from the R package mgcv (Wood 
2011) was also used to investigate the relationship between measured biomass and the 
spectral and botanical composition data. GAMs are a class of statistical model used to 
reveal and estimate non-linear effects. GAMs replace the linear relationship between 
predictors and response with non-linear smooth functions. The smooth functions can 
capture both linear and non-linear relationships. 

The models were evaluated using adjusted R2, and two information criterion 

where NIR is near-infrared reflectance and Red is 
reflectance in the red band.

The following variables were used in the creation 
of linear models with respect to the measured 
biomass: NDVI, red reflectance, blue reflectance, 
green reflectance, NIR reflectance, perennial ryegrass 
leaf proportion (RL), perennial ryegrass reproductive 
stem proportion (RS), annual ryegrass proportion 
(AR), white clover proportion (WC), broad-leaved 
weeds proportion (W), other grass species (O) and 
dead vegetative matter of all species (D); the botanical 
composition data was taken from the nearest sample up 

Table 1 	 Range of pasture component data.

	                        Proportion of pasture component
	
Pasture component	 Mean	 Minimum	 Maximum
	
Perennial ryegrass 
– Leaf	 0.68	 0.16	 0.98
Perennial ryegrass 
– Reproductive Stem	 0.07	 0.00	 0.39
Annual ryegrass	 0.02	 0.00	 0.38
White clover	 0.13	 0.00	 0.79
Broad-leaved weeds	 0.01	 0.00	 0.30
Dead material	 0.05	 0.00	 0.33
Other grass species	 0.05	 0.00	 0.39
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to 20 days before or after the satellite measurement. 
A Generalised Additive Model (GAM) from the R 

package mgcv (Wood 2011) was also used to investigate 
the relationship between measured biomass and the 
spectral and botanical composition data. GAMs are a 
class of statistical model used to reveal and estimate 
non-linear effects. GAMs replace the linear relationship 
between predictors and response with non-linear 
smooth functions. The smooth functions can capture 
both linear and non-linear relationships.

The models were evaluated using adjusted R2, 
and two information criterion metrics: the Akaike 
Information Criterion (AIC) and Bayesian Information 
Criterion (BIC). As the R2 increases with the number of 
parameters in the model, it is not useful for comparing 
models where the number of variables differ. Hence, 
the adjusted R2 is used:

metrics: the Akaike Information Criterion (AIC) and Bayesian Information Criterion 
(BIC). As the R2 increases with the number of parameters in the model, it is not useful 
for comparing models where the number of variables differ. Hence, the adjusted R2 is 
used: 

𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎
2 = 1 − [(1 − 𝑅𝑅2)(𝑛𝑛 − 1)/(𝑛𝑛 − 𝑘𝑘 − 1)]   

 Where n is the number of points and k is the number of variables.  
The AIC and BIC are calculated as follows: 

𝐴𝐴𝐴𝐴𝐴𝐴 = [−2𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 + 2𝑝𝑝] 
𝐵𝐵𝐵𝐵𝐵𝐵 = [−2𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 + 𝑙𝑙𝑙𝑙𝑙𝑙(𝑛𝑛)𝑝𝑝] 

Where L is the likelihood function, and p is the number of parameters in the 
model. 

 
Effect of botanical composition information 

Analyses were conducted using stepwise regression (for the linear models) and 
backward elimination (for the GAM) for variable selection, to determine if the 
addition of some or all botanical composition variables to spectral data resulted in an 
improvement in the accuracy of biomass estimation. Four pairs of models were 
constructed, with and without botanical composition: a linear model using NDVI 
alone (NDVI-simple), a linear model using mean reflectance values (red, green, blue, 
and NIR, hereafter RGBN) with an assumption that the effects of the different 
variables are additive (RGBN-add), a linear model using RGBN considering 
interactions between the spectral terms (RGBN-mult), and a GAM using RGBN 
(RGBN-gam; note that the GAM does not include interactions between the variables). 

For each pair of models, ANOVA was used to determine if the gain in 
explanatory power from including botanical composition data was worth the increase 
in complexity.  
Results  

NDVI had the lowest R2 value of all four models tested whether or not 
botanical composition was included in the analysis (Table 2). For all four model pairs 
(i.e. each model with or without botanical composition), the addition of botanical 
composition data resulted in an improvement in explanatory power, as shown by the 
improved adjusted R2, and ANOVA significance tests (P-value < 0.001; Table 2). The 
addition of botanical composition data also resulted in a lower Akaike Information 
Criterion (AIC) and Bayesian Information Criterion (BIC) in all cases. The Akaike 
and Bayesian Information Criteria are measures of model quality, with smaller values 
indicating models of higher quality. Both take into account the goodness of fit and 
complexity (number of terms) of a model; they differ in that the BIC penalises 
complexity more heavily. A model that is too complex for the data it represents can 
result in overfitting, where it fits too closely to the particular dataset used to build it, 
and does not generalise well to new data. 

Stepwise selection of terms for inclusion in the model identified annual 
ryegrass, other grass species, perennial ryegrass leaf, weeds and white clover as 
explanatory for all the linear models; for the GAM, annual ryegrass and perennial 
ryegrass leaf were still useful, but dead matter and ryegrass reproductive stem 
replaced other grass species and white clover as useful variables. 

Table 2 Characteristics of biomass prediction models 

Model Bot. 
comp*  

Predictor variables 
used 

R2 
(adj.) 

ANOVA 
significant AIC BIC 
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Where L is the likelihood function, and p is the 
number of parameters in the model.

Effect of botanical composition information
Analyses were conducted using stepwise regression 
(for the linear models) and backward elimination 
(for the GAM) for variable selection, to determine 
if the addition of some or all botanical composition 
variables to spectral data resulted in an improvement 

in the accuracy of biomass estimation. Four pairs of 
models were constructed, with and without botanical 
composition: a linear model using NDVI alone (NDVI-
simple), a linear model using mean reflectance values 
(red, green, blue, and NIR, hereafter RGBN) with an 
assumption that the effects of the different variables 
are additive (RGBN-add), a linear model using RGBN 
considering interactions between the spectral terms 
(RGBN-mult), and a GAM using RGBN (RGBN-
gam; note that the GAM does not include interactions 
between the variables).

For each pair of models, ANOVA was used to 
determine if the gain in explanatory power from 
including botanical composition data was worth the 
increase in complexity. 

Results 
NDVI had the lowest R2 value of all four models tested 
whether or not botanical composition was included in 
the analysis (Table 2). For all four model pairs (i.e. 
each model with or without botanical composition), the 
addition of botanical composition data resulted in an 
improvement in explanatory power, as shown by the 
improved adjusted R2, and ANOVA significance tests 
(P-value < 0.001; Table 2). The addition of botanical 
composition data also resulted in a lower Akaike 
Information Criterion (AIC) and Bayesian Information 
Criterion (BIC) in all cases. The Akaike and Bayesian 
Information Criteria are measures of model quality, with 
smaller values indicating models of higher quality. Both 
take into account the goodness of fit and complexity 
(number of terms) of a model; they differ in that the 
BIC penalises complexity more heavily. A model that 
is too complex for the data it represents can result in 
overfitting, where it fits too closely to the particular 
dataset used to build it, and does not generalise well 
to new data.

Table 2 	 Characteristics of biomass prediction models.

Model	 Bot.  	 Predictor variables used	 R2 (adj.)	 ANOVA	 AIC	 BIC 
	 comp*			   significant

NDVI-simple	 No	 NDVI	 0.599		  3488	 3498
	 Yes	 NDVI + O + WC + RL + AR + W	 0.710	 Yes	 3414	 3442

RGBN-add	 No	 R + G + B + N	 0.673		  3441	 3462
	 Yes	 R + G + B + N + O + WC + RL + AR + W	 0.722	 Yes	 3405	 3440

RGBN-mult	 No	 R * G * B * N	 0.725		  3409	 3468
	 Yes	 R * G * B * N + O + WC + RL + AR + W	 0.760	 Yes	 3381	 3458

RGBN-gam	 No	 R + G + B + N	 0.721		  3413	 3476
	 Yes	 R + G + B + N + RS + D + RL + AR + W	 0.792	 Yes	 3355	 3471

*Bot. comp = Botanical composition data
AR = annual ryegrass proportion; D = dead vegetative matter proportion; O = other grass species proportion; RS = perennial ryegrass reproductive stem 
proportion RL = perennial ryegrass leaf proportion; W = broad-leaved weeds proportion; WC = white clover proportion
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Stepwise selection of terms for inclusion in the 
model identified annual ryegrass, other grass species, 
perennial ryegrass leaf, weeds and white clover as 
explanatory for all the linear models; for the GAM, 
annual ryegrass and perennial ryegrass leaf were still 
useful, but dead matter and ryegrass reproductive stem 
replaced other grass species and white clover as useful 
variables.

Discussion
The results obtained here suggest that the addition of 
botanical composition data can provide a substantial 
improvement in the accuracy of pasture biomass 
estimation based on satellite collected images, 
regardless of the model used. Using only the simple 
NDVI metric, the R2 for pasture biomass estimation 
was 0.599, while the inclusion of botanical composition 
data increased the R2 to 0.710. When spectral data (red, 
green, blue and near-infrared) were used separately in 
the RGBN-add, RGBN-mult, and RGBN-gam models, 
the botanical composition data were still useful (with 
R2 increases of 0.049, 0.035 and 0.071 respectively). 
This improvement in each case indicates the value of 
botanical composition information; even the more 
sophisticated models still benefited from its inclusion. 
A clear benefit was gained from treating the satellite 
wavelengths separately, compared with the simple-
NDVI model.

A difference of 10 or greater between two models is 
generally regarded as strongly significant for both AIC 
(Burnham & Anderson 2004) and BIC (Raftery 1995). 
For each model, including botanical composition data 
decreased the AIC by at least 10. Including botanical 
composition data decreased the BIC by at least 10 for 
three of the four models; for RGBN-gam, including 
pasture botanical composition data decreased the BIC 
by 5.

The RGBN-gam model with botanical composition 
data had the highest adjusted R2 and the lowest AIC, 
indicating it should be the preferred model based on 
these criteria. It did not have the lowest BIC; however, 
the BIC has a greater penalty for additional parameters, 
and the non-linear RGBN-gam model introduced a 
large number of parameters. The RGBN-gam model 
and RGBN-mult model were roughly equivalent in the 
absence of botanical composition information, but with 
the addition of the botanical information, the RGBN-
gam model showed greater accuracy. This suggests that 
there are benefits to a non-linear treatment of botanical 
composition proportion information.

The botanical composition variables used here were 
proportional values; their use as predictors in the linear 
models treated them as having a linear effect on biomass 
estimation regardless of the total biomass present. The 
observed improvement in the accuracy of satellite 

pasture biomass estimation that results from adding 
untransformed botanical composition variables to the 
linear models indicates that the proportion variables are 
a sufficient approximation to allow improved pasture 
biomass estimates from satellite measurements.

The GAM fits submodels to the botanical composition 
variables, and results in the best overall model by the 
metrics of AIC and R2, but not by BIC, which is more 
conservative with respect to increased complexity. 
The botanical composition variables selected for the 
GAM, relative to the linear models, include D and 
RS and exclude O and WC. This selective inclusion 
could be because the variables already present in the 
GAM incorporate the explanatory power that would be 
added by O and WC. The improvement in goodness-
of-fit obtained from the GAM (R2 of 0.792) relative to 
NDVI-simple and RGBN-add (R2 of 0.710 and 0.722 
respectively) could also indicate the presence of non-
linear effects.

The saturation effect that occurs for higher biomass 
values is a problem for satellite measurements of 
pasture biomass, particularly during periods where 
pasture biomass is allowed to accumulate to a high level 
(e.g. pastures saved for silage production and autumn 
saved pasture). The dataset for this investigation was 
restricted to biomass below 3000 kg DM/ha and there 
is no evidence at this point that the results obtained in 
this work hold for higher biomass.

All available visual and satellite estimates of pasture 
biomass were used, with the exception of the high 
biomass values (greater than 3000 kg DM/ha) which 
were removed to avoid confounding effects (due to 
potential satellite image saturation). However, the 
botanical composition measurements were restricted to 
the upper range of pasture biomass, as pasture botanical 
composition was estimated directly before grazing. 
As botanical composition can vary substantially 
immediately pre- and post-grazing, this was a 
possible source of noise in the models.  Nonetheless, 
including the botanical composition data resulted in 
an improvement in the accuracy of the satellite pasture 
biomass measurements. Botanical composition was 
estimated five times per year for each paddock enrolled 
in the study. Further work is required to determine 
the trade-offs between the frequency of botanical 
composition estimation and improvements in the 
accuracy of the models used to predict pasture biomass 
from satellite collected images. 

The standard error of the residuals in these models 
ranged from 296 kg DM/ha (NDVI-simple, no botanical 
composition data) to 213 kg DM/ha (RGBN-gam, with 
botanical composition data), in proportion to the R2.

These results are provided with the caveat that 
they are based on data from a single farm. Similar 
analysis on data from a range of locations and botanical 
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compositions would be required to determine whether 
these results could be generalised, or a more general 
model that utilises botanical composition to improve 
biomass estimation could be found. 

Conclusions/Practical implications/Relevance
On the farm used in this investigation, the inclusion 
of botanical composition information improved the 
accuracy of pasture biomass estimation from satellite 
collected images. If a similar result could be repeated 
across a range of sites and botanical compositions, 
then it would be possible to improve the estimation of 
pasture biomass from satellite imagery by augmenting 
the satellite data with botanical composition data. 
Improving the accuracy of pasture biomass estimates 
would enable users to make timelier and more accurate 
grazing management decisions.

However, the botanical composition assessment 
method used in this trial is impractical for use on a 
commercial dairy farm due to labour requirements and 
the need for specialised equipment. While this study 
demonstrates that botanical composition data improves 
the accuracy of satellite estimates of pasture biomass, 
we have not determined the frequency or the precision 
of the botanical composition assessments required to 
produce this improvement. 
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